
This article was downloaded by: On: 22 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713454007

Monoterpenoid derivatives from Paeonia delavayi

Shao-Hua Wu^{ab}; Xiao-Dong Luo^a; Yun-Bao Ma^a; Xiao-Jiang Hao^a; Da-Gang Wu^a ^a Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China ^b The Key Laboratory for Microbiol Resources of Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, China

Online publication date: 09 September 2010

To cite this Article Wu, Shao-Hua , Luo, Xiao-Dong , Ma, Yun-Bao , Hao, Xiao-Jiang and Wu, Da-Gang(2002) 'Monoterpenoid derivatives from Paeonia delavayi', Journal of Asian Natural Products Research, 4: 2, 135 — 140 **To link to this Article: DOI:** 10.1080/10286020290027425 **URL:** http://dx.doi.org/10.1080/10286020290027425

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

MONOTERPENOID DERIVATIVES FROM PAEONIA DELAVAYI

SHAO-HUA WU^{1,2}, XIAO-DONG LUO^{1,*}, YUN-BAO MA¹, XIAO-JIANG HAO¹ and DA-GANG WU¹

 ¹Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
²The Key Laboratory for Microbiol Resources of Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, China

(Received 17 October 2001; Revised 7 November 2001; In final form 19 November 2001)

Three new monoterpene glycosides, 4-*O*-ethylpaeoniflorin (1), 6'-*O*-benzoyl-4"-hydroxy-3"-methoxy-paeoniflorin (2), 6'-*O*-benzoylalbiflorin (3), and a new monoterpenoid, 9-hydroxy-paeonilactone-A (4) were isolated from the root cortex of *Paeonia delavayi*. Their structures were elucidated on the basis of spectral methods.

Keywords: Paeonia delavayi; Paeoniaceae; Monoterpene glycosides; Monoterpenoid

INTRODUCTION

The genus *Paeonia* (Paeoniaceae) is rich in monoterpene glycosides, which are established as the main biologically active constituents [1-5]. The root cortex of *Paeonia delavayi* Franch, as one of the main sources of Chinese traditional medicine "mudanpi," is an important herb known to be an analgesic, sedative, and anti-inflammatory agent. It is also frequently used as a remedy for female diseases in traditional oriental medicine [6-8]. Previous studies on this plant led to the isolation of a new monoterpene glycoside, paeonivayin 1 [9]. Further investigation on the chemical constituents of the same plant resulted in the isolation of three new monoterpene glycosides, 4-*O*-ethylpaeoniflorin (1), 6'-*O*-benzoyl-4"-hydroxy-3"methoxy-paeoniflorin (2), 6'-*O*-benzoylalbiflorin (3), and a new monoterpenoid, 9-hydroxy-paeonilactone-A (4). In this paper, the isolation and structural elucidation of these new compounds are described.

RESULTS AND DISCUSSION

The molecular formula of compound **1** was determined as $C_{25}H_{32}O_{11}$ by negative HRFABMS ($[M - 1]^{-}$ m/z 507.1822, calcd. 507.1866), in which the molecular ion was

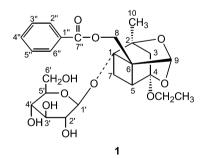
^{*}Corresponding author. Tel.: +86-0871-5223421. Fax: +86-0871-5150227. E-mail: x_dluo@hotmail.com

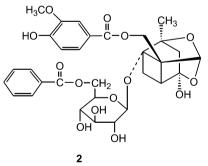
ISSN 1028-6020 print/ISSN 1477-2213 online @ 2002 Taylor & Francis Ltd DOI: 10.1080/10286020290027425

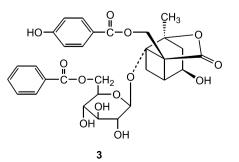
S.-H. WU et al.

28 amu greater than that of paeoniflorin. The ¹H and ¹³C NMR spectra of **1** were very similar to those of paeoniflorin [10,11] except for the additional signals at $\delta_{\rm H}$ 3.75 (2H, q) and 1.14 (3H, t) in the ¹H NMR spectrum, which were in correspondence with the signals at $\delta_{\rm C}$ 59.6 (CH₂) and 15.8 (CH₃) in the ¹³C NMR spectrum based on the HMQC experiment. The HMBC spectrum showed the cross peaks between the methylene protons at $\delta_{\rm H}$ 3.75 to C-4 ($\delta_{\rm C}$ 108.3, s), and the ¹H-¹H COSY spectrum showed that these methylene protons at $\delta_{\rm H}$ 3.75 (2H, q, J = 7.0 Hz) were correlated with the methyl protons at $\delta_{\rm H}$ 1.14 (3H, t, J =7.0 Hz). Thus, compound **1** has a -OCH₂CH₃ group attached to C-4 instead of a hydroxyl group in paeoniflorin. The structure of compound **1** was thus determined as 4-*O*-ethylpaeoniflorin. Compound **1** may be an artifact from paeoniflorin and ethanol formed during extraction procedure.

Compound 2 gave a quasi-molecular ion peak at m/z 629 $[M - 1]^-$ by FAB-MS spectroscopy. Its molecular formula was established as $C_{31}H_{34}O_{14}$ by HRFABMS at m/z 629.1831. Comparing with the reference data [6], the ¹H NMR spectrum of 2 showed the signals of a monoterpene moiety: two methylenes at δ_H 2.28 and 2.46 (d, J = 12.3 Hz) (H₂-3), and δ_H 2.27 (d, J = 10.8 Hz) and 2.86 (dd, J = 10.8, 6.8 Hz) (H₂-7), a methine at δ_H 3.04 (d, J = 6.8 Hz) (H-5), a methylene bearing an acyloxy functionality at δ_H 5.02 and 5.16 (d, J = 12.1 Hz) (H-8), a methine adjacent to two heteroatoms at δ_H 5.88 (s) (H-9) and a methyl at δ_H 1.68 (s) (H-10). The remaining ¹H and ¹³C NMR signals disclosed the presence of a glucose, a benzoyloxy unit, and a 4-hydroxy-3-methoxybenzoyloxy unit (Tables I and II). The determination of these two acyloxy groups was further supported by the fragment ion peaks at m/z 121 and 167, respectively. The locations of these esterifying units were confirmed by the HMBC spectrum, in which long-range correlations were observed from


TABLE I ¹H NMR spectral data for compounds 1-3 (400 MHz)*


Н	1	2	3
3α	2.19 (s)	2.46 (d, 12.3)	2.34 (dd, 12.5, 6.0)
3β		2.28 (d, 12.3)	2.12 (d, 12.5)
4α			4.45 (<i>dt</i> , 7.2, 6.0)
5α	3.03 (d, 6.8)	3.04 (d, 6.8)	3.13 (<i>m</i>)
7α	2.83 (dd, 11.0, 6.8)	2.86 (dd, 10.8, 6.8)	3.08 (dd, 10.5, 7.0)
7β	2.17 (d, 11.0)	2.27 (d, 10.8)	2.28 (d, 10.5)
8a	5.09 (d, 12.1)	5.02 (d,12.1)	5.12 (d, 12.0)
8b	5.17 (d, 12.1)	5.16 (d, 12.1)	5.24 (d, 12.0)
9α	5.81 (s)	5.88 (s)	
10	1.64 (s)	1.68 (s)	1.66 (s)
1'	5.12 (d, 7.7)	5.12 (d, 7.8)	5.03 (d, 8.0)
2'	3.99 (t, 8.9)	4.01 (t, 8.8)	4.03 (t, 8.0)
3'	4.15 (t, 8.9)	4.18 (t, 8.8)	4.15 (t, 8.0)
4′	4.14 (t, 8.9)	4.07 (t, 8.8)	4.07 (t, 8.0)
5'	3.89 (<i>m</i>)	4.10 (dd, 8.8, 5.3)	4.08 (dd, 8.0, 5.0)
6'	4.28 (dd, 11.7, 5.8)	4.95 (dd, 11.6, 6.9)	5.15 (dd, 11.5, 5.0)
	4.52 (dd, 11.7, 2.4)	5.22 (dd, 11.6, 1.8)	5.21 (d, 11.5)
2"	8.16 (d, 7.5)	7.91 (d, 1.9)	8.26 (dd, 8.7, 3.1)
3″	7.31 (t, 7.5)		7.03 (d, 8.7)
4″	7.45 (t, 7.5)		
5″	7.31 (t, 7.5)	7.21 (d, 8.1)	7.03 (d, 8.7)
6″	8.16 (d, 7.5)	7.98 (dd, 8.1, 1.9)	8.26 (dd, 8.7, 3.1)
2"", 6""		8.10 (dd, 7.4, 1.2)	8.22 (d, 7.8)
3‴, 5‴		7.28 (t, 7.4)	7.25 (t, 7.8)
4‴		7.43 (t, 7.4)	7.56 (t, 7.8)
-OCH ₂ CH ₃	3.75 (q, 7.0)		
-OCH ₂ CH ₃	1.14 (t, 7.0)		
-OCH ₃	×* /	3.78 (s)	


* All compounds were measured in pyridine-d₅; chemical shift are in parts per million, with TMS as internal standard.

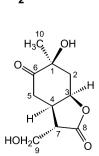

С	1	2	3	4
1	88.7 s	88.9 s	91.7 s	73.4 s
2	86.2 s	86.1 s	86.3 s	42.0 t
3	42.3 t	44.8 t	41.8 t	75.3 d
4	108.3 s	106.0 s	67.5 d	37.3 d
5	41.5 d	43.9 d	41.3 d	38.5 t
5	71.1 s	71.5 s	55.8 s	211.2 s
7	23.5 t	23.1 t	27.7 t	49.0 d
3	61.4 t	61.4 t	61.7 t	177.5 s
)	101.9 d	101.7 d	175.8 s	59.9 t
10	19.9 q	19.8 q	20.7 q	25.1 q
l′	100.5 d	100.3 d	100.2 d	-
2/	75.0 d	74.9 d	74.8 d	
31	78.5 d	78.3 d	78.2 d	
Ľ	71.9 d	71.9 d	71.8 d	
5'	78.6 d	75.4 d	75.2 d	
5'	63.0 t	65.0 t	64.5 t	
//	130.7 s	121.9 s	121.6 s	
2//	130.0 d	113.7 d	132.6 d	
3//	128.9 d	148.5 s	116.2 d	
1 ″	133.5 d	153.4 s	163.8 s	
5//	128.9 d	116.3 d	116.2 d	
5″	130.0 d	124.9 d	132.6 d	
ווק	166.7 s	166.4 s	166.7 s	
///		130.7 s	130.8 s	
2///, 6///		129.9 d	130.1 d	
B ^{///} , 5 ^{///}		128.8 d	128.7 d	
ļī ir lietu ar lietu		133.3 d	133.2 d	
///		166.6 s	166.5 s	
-OCH ₂ CH ₃	59.6 t			
-OCH ₂ CH ₃	15.8 q			
-OCH ₃	1.	56.1 q		

TABLE II 13 C NMR spectral data for compounds 1-4 (pyridine- d_5 , 100 MHz)

4

S.-H. WU et al.

H-1' ($\delta_{\rm H}$ 5.12, d, $J = 8.8 \,{\rm Hz}$) to C-1 ($\delta_{\rm C}$ 88.9, s), H₂-8 ($\delta_{\rm H}$ 5.02 and 5.16, d, $J = 12.1 \,{\rm Hz}$) to C-7" ($\delta_{\rm C}$ 166.4, s), H₂-6' [$\delta_{\rm H}$ 4.95 (dd, J = 11.6, 6.9 Hz), 5.22 (dd, J = 11.6, 1.8 Hz)] to C-7" ($\delta_{\rm C}$ 166.6, s), H-2" ($\delta_{\rm H}$ 7.91, d, $J = 1.9 \,{\rm Hz}$) to C-1" ($\delta_{\rm C}$ 121.9, s), C-3" ($\delta_{\rm C}$ 148.5, s) and C-7", the methoxyl proton ($\delta_{\rm H}$ 3.78, s) to C-3", and H-2", H-6" ($\delta_{\rm H}$ 8.10, dd, J = 7.4, 1.2 Hz) to C-1" ($\delta_{\rm C}$ 130.7, s) and C-7". The assignments of the other signals were confirmed by ¹H-¹H COSY, HMQC, HMBC, and NOESY experiments. Therefore, the structure of the compound **2** was elucidated as 6'-O-benzoyl-4"-hydroxy-3"-methoxy-paeoniflorin.

Compound **3** was indicated to have a molecular formula of $C_{30}H_{32}O_{13}$ by negative HRFABMS at m/z 599.1742 $[M - 1]^-$. Comparison of the NMR spectra of **3** with those of albiflorin [11] suggested that the compound **3** was made up of the same monoterpene nucleus as albiflorin, a 4-hydroxybenzoyloxy group and a benzoyloxy group. The positions of these two benzene rings were differentiated by the HMBC spectrum, in which the long-range couplings were observed between H-8/C-7", H-2"/C-7", H-6"/C-7", H-6"/C-7", H-6"/C-7", H-2"/C-7", H-6"/C-7", H-6"/C-7". Thus, the 4-hydroxybenzoyloxy group was attached to C-8 of the monoterpene nucleus and the benzoyloxy group was attached to C-6' of the glucose moiety. The structure of compound **3** was thus established to be 6'-O-benzoylalbiflorin.

Compound 4 possessed a molecular formula of $C_{10}H_{14}O_5$ based on the HREIMS, in which the molecular ion (*m*/*z* 214.0847) was 16 amu greater than that of paeonilactone-A. The IR spectrum showed the presence of hydroxyl group (3331 cm⁻¹) and two carbonyl groups (1751 and 1731 cm⁻¹). Further study showed that the ¹H and ¹³C NMR spectra of 4 were very similar to those of paeonilactone-A [12], indicating the same skeleton for these two compounds. The only difference was that the compound 4 has an oxygenated methylene (δ_C 59.9, t), instead of a methyl group at C-9 in paeonilactone-A. The HMBC spectrum showed the long-range correlations for H-9 [δ_H 4.35 (dd), 4.06 (dd)] to C-7 (δ_C 49.0, d) and C-8 (δ_C 177.5, s). In the NOESY spectrum, NOE enhancement was observed between H-5 α and H-4, H-10, and between H-4 and H-3, H-9. Therefore, the structure of compound 4 was determined as 9-hydroxy-paeonilactone-A.

EXPERIMENTAL SECTION

General Experimental Procedures

Optical rotations were measured with a Horiba SEAP-300 spectropolarimeter. Ultraviolet spectra were taken on a Shimadzu double-beam 210A spectrophotometer. Infrared spectra were obtained on a Bio-Rad FTS-135 infrared spectrophotometer with KBr pellets. ¹H NMR, ¹³C NMR, and two-dimensional-NMR spectra were recorded on Bruker AM-400 MHz and DRX-500 spectrometers with TMS as an internal standard. Mass spectrometry data were recorded on a VG Autospec-3000 spectrometer.

Plant Material

The root cortex material of *Paeonia delaviyi* was collected in the Lijiang area of Yunnan Province, in August 1998, and identified by Prof. Zhen-Wei Lu, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming, Yunnan, where a voucher specimen is deposited.

Extraction and Isolation

Dried and powdered root cortex of *Paeonia delavayi* (5 kg) was extracted with EtOH three times at room temperature. The extract was concentrated under vacuum to afford a residue, which was suspended in water, and partitioned with EtOAc. The EtOAc extract was concentrated *in vacuo* to give a residue (53 g), which was chromatographed on a silica gel column (200–300 mesh, 1 kg) and eluted with a CHCl₃–MeOH mixture containing an increasing amount of MeOH. The fractions were combined after monitoring by TLC. Fractions 5-8 (4.8 g) were further submitted to repeated Si gel (CHCl₃–MeOH 9:1) and RP-18 gel column (MeOH–H₂O 6:4) chromatography to give compounds 1 (27 mg), 2 (56 mg), 3 (10 mg), and 4 (14 mg).

4-O-Ethylpaeoniflorin (1)

White foam; $[\alpha]_D^{25} - 9.5$ (*c* 0.39, MeOH); UV (MeOH) λ_{max} (log ε) 202.5 (4.08), 229.0 (4.06), 273.5 (2.38), 280.5 (2.73) nm; IR (KBr) ν_{max} 3434, 2976, 2928, 1714, 1600, 1451, 1345, 1313, 1276, 1224, 1176, 1050, 958, 825, 714 cm⁻¹; ¹H NMR spectral data, see Table I; ¹³C NMR spectral data, see Table II; negative-ion FAB-MS *m*/*z* [M - 1]⁻ 507 (5), 403 (4), 325 (4), 121 (100), 77 (10); negative-ion HRFABMS *m*/*z* [M - 1]⁻ 507.1822 (calcd for C₂₅H₃₂O₁₁, 507.1866).

6'-O-Benzoyl-4"-hydroxy-3"-methoxy-paeoniflorin (2)

White foam; $[\alpha]_D^{17} - 14.0$ (*c* 0.43, MeOH); UV (MeOH) λ_{max} (log ε) 202.5 (4.36), 222.0 (4.34), 262.5 (4.02), 292.0 (3.67) nm; IR (KBr) ν_{max} 3430, 1711, 1599, 1514, 1450, 1428, 1383, 1345, 1284, 1222, 1179, 1115, 1073, 1025, 823, 763, 714 cm⁻¹; ¹H NMR spectral data, see Table I; ¹³C NMR spectral data, see Table II; negative-ion FAB-MS *m*/*z* [M - 1]⁻ 629 (100), [M-CH₃]⁻ 615 (4), 507 (7), 311 (9), 209 (6), 167 (34), 121 (56); negative-ion HRFABMS *m*/*z* [M - 1]⁻ 629.1831 (calcd for C₃₁H₃₄O₁₄, 629.1870).

6'-O-Benzoylalbiflorin (3)

Amorphous white powder; $[\alpha]_D^{17} - 22.7$ (*c* 0.31, MeOH); UV (MeOH) λ_{max} (log ε) 203.0 (4.41), 227.5 (4.38), 259.0 (3.59) nm; IR (KBr) ν_{max} 3420, 2923, 2860, 1749, 1712, 1605, 1513, 1452, 1381, 1278, 1167, 1116, 1070, 942, 771, 714 cm⁻¹; ¹H NMR spectral data, see Table I; ¹³C NMR spectral data, see Table II; negative-ion FAB-MS *m*/*z* [M - 1]⁻ 599 (100), 325 (15), 255 (10); negative-ion HRFABMS *m*/*z* [M - 1]⁻ 599.1742 (calcd. for C₃₀H₃₂O₁₃, 599.1765).

9-Hydroxy-paeonilactone-A (4)

Amorphous white powder; $[\alpha]_D^{24} - 11.4$ (*c* 0.42, MeOH); UV no absorption; IR (KBr) ν_{max} 3331, 2979, 2915, 1751, 1731, 1464, 1375, 1340, 1174, 1150, 994 cm⁻¹; ¹H NMR (pyridined₅, 400 MHz) δ 1.50 (3H, s, H-10), 2.48 (2H, d, J = 6.6 Hz, H-2), 2.91 (1H, dd, J = 15.6, 6.9 Hz, H-5 β), 2.97 (1H, dd, J = 15.6, 3.4 Hz, H-5 α), 3.01 (1H, m, overlap, H-7), 3.59 (1H, m, H-4), 4.06 (1H, dd, J = 10.9, 3.3 Hz, H-9 β), 4.35 (1H, dd, J = 10.9, 4.1 Hz, H-9 α), 5,14 (1H, dd, J = 14.9, 6.7 Hz, H-3 α); ¹³C NMR spectral data, see Table II; EIMS *m*/*z* [M]⁺ 214 (3), 186 (36), 171 (39), 168 (31), 125 (31), 114 (78), 97 (85), 87 (96), 55 (100); HREIMS *m*/*z* [M]⁺ 214.0847 (calcd. for C₁₀H₁₄O₅, 214.0841). S.-H. WU et al.

Acknowledgments

The authors are grateful for financial support from Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences. We also thank the analytical group of our institute, for the spectral measurements.

References

- [1] Kostova, I.N., Simeonov, M.F. and Todorova, D.I. (1998), *Phytochemistry* 47(2), 1303–1307.
- [2] Kostova, I.N., Simeonov, M.F., Todorova, D.I. and Petkova, P.L. (1998), *Phytochemistry* 48(3), 511-514.
- [3] Murakami, N., Saka, M., Shimada, H., Matsuda, H., Yamahara, J. and Yoshikawa, M. (1996), Chem. Pharm. Bull. 44(6), 1279-1281.
- [4] Yoshikawa, M., Harada, E., Kawaguchi, A., Yamahara, J., Murakami, N. and Kitagawa, I. (1993), Chem. Pharm. Bull. 41(3), 630-632.
- [5] Yoshikawa, M., Harada, E., Minematsu, T., Muraoka, O., Yamahara, J., Murakami, N. and Kitagawa, I. (1994), *Chem. Pharm. Bull.* 42(3), 736–738.
- [6] Lin, H.C., Ding, H.Y., Wu, T.S. and Wu, P.L. (1996), Phytochemistry 41(1), 237-242.
- [7] Kang, S.S., Shin, K.H. and Chi, H.J. (1991), Arch. Pharm. Res. 14(1), 52-54.
- [8] Kubo, M., Tani, T., Kosoto, H., Kimura, Y. and Arichi, S. (1979), Shoyakugaku Zasshi 33, 155-157.
- [9] Ma, Y.B., Wu, D.G. and Liu, J.K. (1999), Chin. Chem. Lett. 10(9), 771-774.
- [10] Lemmich, J. (1996), Phytochemnistry 41(5), 1337-1340.
- [11] Yamasaki, K., Kaneda, M. and Tanaka, O. (1976), *Tetrahedron Lett.* 44, 3965–3968.
- [12] Hayashi, T., Shimbo, T., Shimizu, M., Arisawa, M., Morita, N., Kimura, M., Matsuda, S. and Kikuchi, T. (1985), *Tetrahedron Lett.* 26(31), 3699–3702.

140